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Background 

 Recent studies have shown that the crack growth of PWSCC is 
mainly driven by the weld residual stress (WRS) within the 
dissimilar metal weld 
 

 The existing stress intensity factor (K) solutions for surface 
cracks in pipe typically require a polynomial stress distribution 
through the pipe wall thickness.  (e.g., in API RP 579, the 
through thickness stress distribution can be represented as a 
4th order polynomial fit) 
 

 However, if the through thickness stress distribution contains 
steep gradients or sharp fluctuation (as in typical WRS 
distributions), it may not be feasible to accurately represent 
the stress distribution with a 4th order polynomial fit 
 

 Furthermore, the uncertainty in the accuracy of calculated 
stress intensity factors is questionable  
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Background (cont’d) 

 Universal Weight Function Method (UWFM) which does not 
require a polynomial fit to the actual stress distribution has 
been proposed for implementation into the ASME Code 
Section XI – [See PVP2012-78236] 
 

 In this method, piece-wise cubic variation of stress between 
discrete locations where stresses are known are used to 
calculate the stress intensity factor 
 

 Solutions available for the deepest point and the surface point 
of a semi-elliptical surface crack in a cylinder or a flat plate 
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Universal Weight Function Method 

 UWFM for circumferential surface crack  
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Universal Weight Function Method (cont’d) 

 Piece-wise cubic stress interpolation 
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Polynomial Stress Distribution Method 
 Polynomial stress distribution through the wall thickness - e.g. 

4th order polynomial stress distribution represented as: 
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Workscope 

WRS 

FE K solution 

  Polynomial fit method 
 - Entire polynomial fit 

 - Partial polynomial fit 

  UWFM solution 
 - Piece-wise cubic fit 

 K solutions for various semi-
elliptical crack sizes:  
 - a/t=0.2, 0.4, 0.6, 0.8 (fix c/a=5, Ri/t=3)  

 - K values at deepest and surface points 

 

Compare 

Investigate the potential sensitivity of stress intensity 
factors to the 4th order polynomial fitting artifacts 
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Select Welding Residual Stress 

 Selected from the Phase II of the NRC/EPRI Welding 
Residual Stress Validation Program 
 

 Cases that could not be well represented by 3rd (or 
4th) order polynomial fits 
 

 Cases that had multiple ‘peaks and valleys’ 
 

 Cases that bounded the entire data set 
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Selected Welding Residual Stress (cont’d) 

 Selected from the Phase II of the NRC/EPRI Welding 
Residual Stress Validation Program 
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Selected Welding Residual Stress (cont’d)  

 4th order polynomial representation 
WRS data

DTE method

DTE method 
(4th order poly.)
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is applied through the pipe thickness to generate the WRS profile 
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Finite Element Based K Solutions 

 FE based K solution 
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Piece-wise Cubic Stress Fit 

 Example of piece-wise cubic stress fit for UWFM  
 

 51 data points through the thickness 
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WRS data

DTE method

DTE method 
(4th order poly.)

Polynomial Fits  

 Examples of 4th order polynomial fit   
 Using entire thickness data 

 
 
 
 
 
 

 Using data up to crack-tip 
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Comparison of Results  

0.2 1.015 -0.025 1.021
0.4 1.059 1.678 0.984
0.6 0.992 0.797 1.041
0.8 1.026 0.980 1.013
0.2 1.014 0.810 1.013
0.4 1.012 1.313 0.987
0.6 1.014 0.934 1.062
0.8 1.019 0.915 1.022
0.2 0.999 0.780 0.996
0.4 1.019 1.149 0.995
0.6 1.020 0.973 1.026
0.8 1.004 0.920 0.943
0.2 1.022 0.730 1.021
0.4 0.991 1.240 0.987
0.6 1.001 0.836 1.021
0.8 1.016 0.921 0.924
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0.8 1.005 1.217 1.514
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0.6 0.945 0.961 1.125
0.8 0.945 0.975 1.024
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 Input for crack growth calculations 

Application to Crack Growth Analyses 

Using entire thickness data 
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 Crack growth results – K values 

Application to Crack Growth Analyses (cont’d) 
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 Crack growth results – Crack shapes 

Application to Crack Growth Analyses (cont’d) 
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Concluding Remarks 

 The UWFM solutions showed good agreement (within 
1.5% difference on average) with the FE results – for both 
deepest and surface points 
 

 The results of the polynomial stress distribution method 
showed larger difference compared to the UWFM results.  
For the deepest point, the difference was reduced when 
the polynomial fit was conducted using the stress data 
up to the crack-tip.  However, this trend was not shown 
for the surface point. 
 

 The results of this study demonstrate the potential 
sensitivity of stress intensity factors to polynomial stress 
fitting artifacts   
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Concluding Remarks (cont’d) 

 The piece-wise WRS representations used in the UWFM 
is not sensitive to these fitting artifacts 
 

 Crack growth analyses results demonstrate that the 
polynomial stress fitting artifacts can affect the crack 
growth calculation results 
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